contact@nwebsolution.net | info@nwebsolution.net

0317-8370762 | 0317-8370762

UPDATES

Admissions Open in Digital Marketing         Admissions Open in Graphic Designing         Admissions Open in Web-Designing         Admissions Open in Microsoft Office         Admissions Open in Web-Development         Admissions Open in Fullstack Development         Admissions Open in Software Development

info@nwebsolution.net

Data Science

Course Detials

Data Science

Module 1: Introduction to Data Science

  • What is Data Science?

  • Applications and use cases

  • Data Scientist roles and skills

  • Tools of the trade (Python, Jupyter, Git, etc.)


Module 2: Python for Data Science

  • Python basics (variables, loops, functions)

  • Data structures (lists, tuples, dictionaries, sets)

  • Libraries:

    • NumPy for numerical operations

    • Pandas for data manipulation

    • Matplotlib & Seaborn for visualization


Module 3: Data Wrangling & Cleaning

  • Importing data (CSV, Excel, SQL, APIs)

  • Handling missing values

  • Data type conversions

  • String operations & date-time formatting

  • Outliers and duplicates


Module 4: Data Visualization

  • Matplotlib, Seaborn, Plotly basics

  • Histograms, scatter plots, box plots, pairplots

  • Customizing plots (labels, legends, themes)

  • Dashboards (intro to Streamlit or Tableau)


Module 5: Exploratory Data Analysis (EDA)

  • Descriptive statistics

  • Grouping & aggregation

  • Correlation and covariance

  • Feature engineering basics


Module 6: Probability & Statistics

  • Probability theory basics

  • Random variables and distributions (normal, binomial, Poisson)

  • Hypothesis testing (t-test, chi-square test)

  • Confidence intervals

  • Central limit theorem


Module 7: Machine Learning (ML)

  • Supervised Learning

    • Linear regression

    • Logistic regression

    • Decision Trees & Random Forests

    • k-Nearest Neighbors

    • Support Vector Machines (SVM)

  • Unsupervised Learning

    • K-means clustering

    • Hierarchical clustering

    • PCA (Principal Component Analysis)


Module 8: Model Evaluation & Tuning

  • Train/test split

  • Cross-validation

  • Accuracy, precision, recall, F1-score

  • ROC curves and AUC

  • Hyperparameter tuning (GridSearch, RandomSearch)


Module 9: Advanced Topics (Optional)

  • Natural Language Processing (NLP)

  • Time Series Forecasting

  • Deep Learning intro with TensorFlow or PyTorch

  • Recommendation Systems


Module 10: Working with Real-World Data

  • Web scraping with BeautifulSoup or Scrapy

  • Working with APIs (e.g., Twitter, OpenWeather)

  • SQL for Data Science

  • Big data tools overview (Hadoop, Spark)


Module 11: Capstone Project

  • Choose a real dataset (Kaggle, UCI, etc.)

  • Complete EDA, modeling, evaluation

  • Document in Jupyter or create a dashboard

  • Present your findings

Favourites

Latest Course

Certificate in Information technology
View Course
Microsoft Office Latest
View Course
Diploma in Information Technology
View Course
Graphic Designing
View Course